gcc/libquadmath/math/complex.c
Francois-Xavier Coudert 1ec601bf9f re PR fortran/32049 (Support on x86_64 also kind=16)
/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        * Makefile.def: Add libquadmath; build it with language=fortran.
        * configure.ac: Add libquadmath.
        * Makefile.tpl: Handle multiple libs in check-[+language+].
        * Makefile.in: Regenerate.
        * configure: Regenerate.

libquadmath/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        Initial implementation and checkin.

gcc/fortran/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        * gfortranspec.c (find_spec_file): New function.
        (lang_specific_driver): Try to find .spec file and use it.
        * trans-io.c (iocall): Define
        * IOCALL_X_REAL128/COMPLEX128(,write).
        (gfc_build_io_library_fndecls): Build decl for __float128 I/O.
        (transfer_expr): Call __float128 I/O functions.
        * trans-types.c (gfc_init_kinds): Allow kind-16 belonging
        to __float128.

gcc/testsuite/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        * gfortran.dg/quad_1.f90: New.
        * lib/gcc-defs.exp (gcc-set-multilib-library-path): Use also
        compiler arguments.
        * lib/gfortran.exp (gfortran_link_flags): Add libquadmath to
        library search path; call gcc-set-multilib-library-path with
        arguments such that libgfortran.spec is found.
        (gfortran_init): Add path for libgfortran.spec to
GFORTRAN_UNDER_TEST.

libgomp/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        * configure.ac: 
        * configure: Regenerate.

libgfortran/
2010-11-13  Francois-Xavier Coudert  <fxcoudert@gcc.gnu.org>
            Tobias Burnus  <burnus@net-b.de>

        PR fortran/32049
        * Makefile.am: Add missing pow_r16_i4.c, add transfer128.c,
        link libquadmath, if used.
        * acinclude.m4 (LIBGFOR_CHECK_FLOAT128): Add.
        * configure.ac: Use it, touch spec file.
        * gfortran.map: Add pow_r16_i4 and
        transfer_(real,complex)128(,write) functions.
        * intrinsics/cshift0.c (cshift0): Handle __float128 type.
        * intrinsics/erfc_scaled_inc.c: Ditto.
        * intrinsics/pack_generic.c (pack): Ditto
        * intrinsics/spread_generic.c (spread): Ditto.
        * intrinsics/unpack_generic.c (unpack1): Ditto.
        * io/read.c (convert_real): Ditto.
        * io/transfer.c: Update comments.
        * io/transfer128.c: New file.
        * io/write_float.def (write_float): Handle __float128 type.
        * libgfortran.h: #include quadmath_weak.h, define __builtin_infq
        and nanq.
        * m4/mtype.m4: Handle __float128 type.
        * runtime/in_pack_generic.c (internal_pack): Ditto.
        * runtime/in_unpack_generic.c (internal_unpack): Ditto.
        * kinds-override.h: New file.
        * libgfortran.spec.in: Ditto.
        * generated/pow_r16_i4.c: Generated.
        * Makefile.in: Regenerate.
        * configure: Regenerate.
        * config.h: Regenerate.
        * bessel_r10.c: Regenerate.
        * bessel_r16.c: Regenerate.
        * bessel_r4.c: Regenerate.
        * bessel_r8.c: Regenerate.
        * exponent_r16.c: Regenerate.
        * fraction_r16.c: Regenerate.
        * nearest_r16.c: Regenerate.
        * norm2_r10.c: Regenerate.
        * norm2_r16.c: Regenerate.
        * norm2_r4.c: Regenerate.
        * norm2_r8.c: Regenerate.
        * rrspacing_r16.c: Regenerate.
        * set_exponent_r16.c: Regenerate.
        * spacing_r16.c: Regenerate.


Co-Authored-By: Tobias Burnus <burnus@net-b.de>

From-SVN: r166825
2010-11-16 22:23:19 +01:00

211 lines
3.9 KiB
C

#include "quadmath-imp.h"
#define REALPART(z) (__real__(z))
#define IMAGPART(z) (__imag__(z))
#define COMPLEX_ASSIGN(z_, r_, i_) {__real__(z_) = (r_); __imag__(z_) = (i_);}
// Horrible... GCC doesn't know how to multiply or divide these
// __complex128 things. We have to do it on our own.
// Protect it around macros so, some day, we can switch it on
#if 0
# define C128_MULT(x,y) ((x)*(y))
# define C128_DIV(x,y) ((x)/(y))
#else
#define C128_MULT(x,y) mult_c128(x,y)
#define C128_DIV(x,y) div_c128(x,y)
static inline __complex128 mult_c128 (__complex128 x, __complex128 y)
{
__float128 r1 = REALPART(x), i1 = IMAGPART(x);
__float128 r2 = REALPART(y), i2 = IMAGPART(y);
__complex128 res;
COMPLEX_ASSIGN(res, r1*r2 - i1*i2, i2*r1 + i1*r2);
return res;
}
// Careful: the algorithm for the division sucks. A lot.
static inline __complex128 div_c128 (__complex128 x, __complex128 y)
{
__float128 n = hypotq (REALPART (y), IMAGPART (y));
__float128 r1 = REALPART(x), i1 = IMAGPART(x);
__float128 r2 = REALPART(y), i2 = IMAGPART(y);
__complex128 res;
COMPLEX_ASSIGN(res, r1*r2 + i1*i2, i1*r2 - i2*r1);
return res / n;
}
#endif
__float128
cabsq (__complex128 z)
{
return hypotq (REALPART (z), IMAGPART (z));
}
__complex128
cexpq (__complex128 z)
{
__float128 a, b;
__complex128 v;
a = REALPART (z);
b = IMAGPART (z);
COMPLEX_ASSIGN (v, cosq (b), sinq (b));
return expq (a) * v;
}
__complex128
cexpiq (__float128 x)
{
__complex128 v;
COMPLEX_ASSIGN (v, cosq (x), sinq (x));
return v;
}
__float128
cargq (__complex128 z)
{
return atan2q (IMAGPART (z), REALPART (z));
}
__complex128
clogq (__complex128 z)
{
__complex128 v;
COMPLEX_ASSIGN (v, logq (cabsq (z)), cargq (z));
return v;
}
__complex128
clog10q (__complex128 z)
{
__complex128 v;
COMPLEX_ASSIGN (v, log10q (cabsq (z)), cargq (z));
return v;
}
__complex128
cpowq (__complex128 base, __complex128 power)
{
return cexpq (C128_MULT(power, clogq (base)));
}
__complex128
csinq (__complex128 a)
{
__float128 r = REALPART (a), i = IMAGPART (a);
__complex128 v;
COMPLEX_ASSIGN (v, sinq (r) * coshq (i), cosq (r) * sinhq (i));
return v;
}
__complex128
csinhq (__complex128 a)
{
__float128 r = REALPART (a), i = IMAGPART (a);
__complex128 v;
COMPLEX_ASSIGN (v, sinhq (r) * cosq (i), coshq (r) * sinq (i));
return v;
}
__complex128
ccosq (__complex128 a)
{
__float128 r = REALPART (a), i = IMAGPART (a);
__complex128 v;
COMPLEX_ASSIGN (v, cosq (r) * coshq (i), - (sinq (r) * sinhq (i)));
return v;
}
__complex128
ccoshq (__complex128 a)
{
__float128 r = REALPART (a), i = IMAGPART (a);
__complex128 v;
COMPLEX_ASSIGN (v, coshq (r) * cosq (i), sinhq (r) * sinq (i));
return v;
}
__complex128
ctanq (__complex128 a)
{
__float128 rt = tanq (REALPART (a)), it = tanhq (IMAGPART (a));
__complex128 n, d;
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, - (rt * it));
return C128_DIV(n,d);
}
__complex128
ctanhq (__complex128 a)
{
__float128 rt = tanhq (REALPART (a)), it = tanq (IMAGPART (a));
__complex128 n, d;
COMPLEX_ASSIGN (n, rt, it);
COMPLEX_ASSIGN (d, 1, rt * it);
return C128_DIV(n,d);
}
/* Square root algorithm from glibc. */
__complex128
csqrtq (__complex128 z)
{
__float128 re = REALPART(z), im = IMAGPART(z);
__complex128 v;
if (im == 0)
{
if (re < 0)
{
COMPLEX_ASSIGN (v, 0, copysignq (sqrtq (-re), im));
}
else
{
COMPLEX_ASSIGN (v, fabsq (sqrtq (re)), copysignq (0, im));
}
}
else if (re == 0)
{
__float128 r = sqrtq (0.5 * fabsq (im));
COMPLEX_ASSIGN (v, r, copysignq (r, im));
}
else
{
__float128 d = hypotq (re, im);
__float128 r, s;
/* Use the identity 2 Re res Im res = Im x
to avoid cancellation error in d +/- Re x. */
if (re > 0)
r = sqrtq (0.5 * d + 0.5 * re), s = (0.5 * im) / r;
else
s = sqrtq (0.5 * d - 0.5 * re), r = fabsq ((0.5 * im) / s);
COMPLEX_ASSIGN (v, r, copysignq (s, im));
}
return v;
}