android_kernel_xiaomi_sdm845/net/rfkill/rfkill-input.c
Dmitry Baryshkov d8b105f900 RFKILL: fix input layer initialisation
Initialise correctly last fields, so tasks can be actually executed.
On some architectures the initial jiffies value is not zero, so later
all rfkill incorrectly decides that rfkill_*.last is in future.

Signed-off-by: Dmitry Baryshkov <dbaryshkov@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-10-27 17:46:11 -04:00

275 lines
6.8 KiB
C

/*
* Input layer to RF Kill interface connector
*
* Copyright (c) 2007 Dmitry Torokhov
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/init.h>
#include <linux/rfkill.h>
#include <linux/sched.h>
#include "rfkill-input.h"
MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
MODULE_DESCRIPTION("Input layer to RF switch connector");
MODULE_LICENSE("GPL");
struct rfkill_task {
struct work_struct work;
enum rfkill_type type;
struct mutex mutex; /* ensures that task is serialized */
spinlock_t lock; /* for accessing last and desired state */
unsigned long last; /* last schedule */
enum rfkill_state desired_state; /* on/off */
};
static void rfkill_task_handler(struct work_struct *work)
{
struct rfkill_task *task = container_of(work, struct rfkill_task, work);
mutex_lock(&task->mutex);
rfkill_switch_all(task->type, task->desired_state);
mutex_unlock(&task->mutex);
}
static void rfkill_task_epo_handler(struct work_struct *work)
{
rfkill_epo();
}
static DECLARE_WORK(epo_work, rfkill_task_epo_handler);
static void rfkill_schedule_epo(void)
{
schedule_work(&epo_work);
}
static void rfkill_schedule_set(struct rfkill_task *task,
enum rfkill_state desired_state)
{
unsigned long flags;
if (unlikely(work_pending(&epo_work)))
return;
spin_lock_irqsave(&task->lock, flags);
if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
task->desired_state = desired_state;
task->last = jiffies;
schedule_work(&task->work);
}
spin_unlock_irqrestore(&task->lock, flags);
}
static void rfkill_schedule_toggle(struct rfkill_task *task)
{
unsigned long flags;
if (unlikely(work_pending(&epo_work)))
return;
spin_lock_irqsave(&task->lock, flags);
if (time_after(jiffies, task->last + msecs_to_jiffies(200))) {
task->desired_state =
rfkill_state_complement(task->desired_state);
task->last = jiffies;
schedule_work(&task->work);
}
spin_unlock_irqrestore(&task->lock, flags);
}
#define DEFINE_RFKILL_TASK(n, t) \
struct rfkill_task n = { \
.work = __WORK_INITIALIZER(n.work, \
rfkill_task_handler), \
.type = t, \
.mutex = __MUTEX_INITIALIZER(n.mutex), \
.lock = __SPIN_LOCK_UNLOCKED(n.lock), \
.desired_state = RFKILL_STATE_UNBLOCKED, \
}
static DEFINE_RFKILL_TASK(rfkill_wlan, RFKILL_TYPE_WLAN);
static DEFINE_RFKILL_TASK(rfkill_bt, RFKILL_TYPE_BLUETOOTH);
static DEFINE_RFKILL_TASK(rfkill_uwb, RFKILL_TYPE_UWB);
static DEFINE_RFKILL_TASK(rfkill_wimax, RFKILL_TYPE_WIMAX);
static DEFINE_RFKILL_TASK(rfkill_wwan, RFKILL_TYPE_WWAN);
static void rfkill_schedule_evsw_rfkillall(int state)
{
/* EVERY radio type. state != 0 means radios ON */
/* handle EPO (emergency power off) through shortcut */
if (state) {
rfkill_schedule_set(&rfkill_wwan,
RFKILL_STATE_UNBLOCKED);
rfkill_schedule_set(&rfkill_wimax,
RFKILL_STATE_UNBLOCKED);
rfkill_schedule_set(&rfkill_uwb,
RFKILL_STATE_UNBLOCKED);
rfkill_schedule_set(&rfkill_bt,
RFKILL_STATE_UNBLOCKED);
rfkill_schedule_set(&rfkill_wlan,
RFKILL_STATE_UNBLOCKED);
} else
rfkill_schedule_epo();
}
static void rfkill_event(struct input_handle *handle, unsigned int type,
unsigned int code, int data)
{
if (type == EV_KEY && data == 1) {
switch (code) {
case KEY_WLAN:
rfkill_schedule_toggle(&rfkill_wlan);
break;
case KEY_BLUETOOTH:
rfkill_schedule_toggle(&rfkill_bt);
break;
case KEY_UWB:
rfkill_schedule_toggle(&rfkill_uwb);
break;
case KEY_WIMAX:
rfkill_schedule_toggle(&rfkill_wimax);
break;
default:
break;
}
} else if (type == EV_SW) {
switch (code) {
case SW_RFKILL_ALL:
rfkill_schedule_evsw_rfkillall(data);
break;
default:
break;
}
}
}
static int rfkill_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "rfkill";
/* causes rfkill_start() to be called */
error = input_register_handle(handle);
if (error)
goto err_free_handle;
error = input_open_device(handle);
if (error)
goto err_unregister_handle;
return 0;
err_unregister_handle:
input_unregister_handle(handle);
err_free_handle:
kfree(handle);
return error;
}
static void rfkill_start(struct input_handle *handle)
{
/* Take event_lock to guard against configuration changes, we
* should be able to deal with concurrency with rfkill_event()
* just fine (which event_lock will also avoid). */
spin_lock_irq(&handle->dev->event_lock);
if (test_bit(EV_SW, handle->dev->evbit)) {
if (test_bit(SW_RFKILL_ALL, handle->dev->swbit))
rfkill_schedule_evsw_rfkillall(test_bit(SW_RFKILL_ALL,
handle->dev->sw));
/* add resync for further EV_SW events here */
}
spin_unlock_irq(&handle->dev->event_lock);
}
static void rfkill_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id rfkill_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_WLAN)] = BIT_MASK(KEY_WLAN) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_BLUETOOTH)] = BIT_MASK(KEY_BLUETOOTH) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_UWB)] = BIT_MASK(KEY_UWB) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_WIMAX)] = BIT_MASK(KEY_WIMAX) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_SWBIT,
.evbit = { BIT(EV_SW) },
.swbit = { [BIT_WORD(SW_RFKILL_ALL)] = BIT_MASK(SW_RFKILL_ALL) },
},
{ }
};
static struct input_handler rfkill_handler = {
.event = rfkill_event,
.connect = rfkill_connect,
.disconnect = rfkill_disconnect,
.start = rfkill_start,
.name = "rfkill",
.id_table = rfkill_ids,
};
static int __init rfkill_handler_init(void)
{
unsigned long last_run = jiffies - msecs_to_jiffies(500);
rfkill_wlan.last = last_run;
rfkill_bt.last = last_run;
rfkill_uwb.last = last_run;
rfkill_wimax.last = last_run;
return input_register_handler(&rfkill_handler);
}
static void __exit rfkill_handler_exit(void)
{
input_unregister_handler(&rfkill_handler);
flush_scheduled_work();
}
module_init(rfkill_handler_init);
module_exit(rfkill_handler_exit);